FOSSA + OWASP LA

July 24th, 2024

Speaker: Chelsea Boling

FOSSA

HOWDY! Who likes an agenda?! '+« +

d Intros
A CVE noise and breaking it through
A Vulnerability prioritization demonstration

Breaking Through CVE Noise:
Analyzing 5 Key Prioritization Inputs

Streamlining Vulnerability Resolution Process

FOSSA

@ FOSSA 4

Understanding CVE Noise

o riang o aeatuan o crolenes forseufly IMAGINE NO MORE
With thousands of new CVEs reported annually, security teams face the B“HIEEFMSE PnsIIWEs

daunting task of sifting through and prioritizing the most critical 74
vulnerabilities. i

Distinguishing between the severity levels of vulnerabilities is crucial to
allocating resources efficiently and addressing the most impactful
threats first.

CVSS Scores

The Common Vulnerability Scoring System (CVSS) provides a standardized method for assessing and prioritizing
vulnerabilities based on their severity and impact on systems: https://nvd.nist.gov/vuln-metrics/cvss

EPSS Scores

The Exploit Prediction Scoring System (EPSS) helps security teams predict which vulnerabilities are likely to be exploited
and need immediate attention, enabling proactive security measures.

The CISA (Cybersecurity & Infrastructure Security Agency) Known Exploited Vulnerabilities (KEV) Catalog helps identify
vulnerabilities actively exploited in the wild, guiding security teams in focusing on immediate threats with known exploit
activity.

https://nvd.nist.gov/vuln-metrics/cvss

VEX Data

Vulnerabilities Exposure Factor (VEX) communicates whether or not a vulnerability is exploitable given it's real world use
case and its potential impact across the business organization.

Reachability Analysis

Reachability analysis infers if the vulnerability is reachable in your first-party code. Reachability analysis lists call paths from
your first-party code to vulnerable functions associated with CVEs. This way, you can proactively remediate the issue by
modifying your usage of dependency. This highly depends on your build environment.

Prioritization of vulnerabilities comes with what you may know in your own business (e.g. the types of security tools that are
available (or not available), the cybersecurity budget your organization you may have, the applications that are the most
valuable to your org).

CVSS Scores

CVSS (Common Vulnerability Scoring System) has long
been seen as the de facto mechanism for vulnerability

prioritization, but industry focus in recent years has shifted

to exploitation as an indicator for vulnerability risk

GitHub Advisory Database / Unreviewed / CVE-2023-35116

An issue was discovered jackson-databind thru 2.15.2...
Unreviewed | Published on Jun 14, 2023 to the GitHub Advisory Database + Updated on Nov 4, 2023

Package
No package listed— Sugge
Description

Anissue was discovered jac
crafted object that uses cyc

References

« https:/Jnvd.nist.gov/vuli
« FasterXML/jackson-dat

Published by the Nationa
Published to the GitHub

@© Last updated on Nov 4, 2

Severity

(High) 7.5 /10

CVSS base metrics

Attack vector Network
Attack complexity Low
Privileges required None
User interaction None
Scope Unchanged
Confidentiality None
Integrity None
Availability High

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

Try something new

Projects such as EPSS
and CISA Known
Exploited Vulnerabilities
(KEV) have emerged,
providing visibility into this
data for the entire
security community.

EPSS Scores

97.6% (100th) ﬂNohx CVE-2021-44228
Improper Input Validation
in ¥ logdjlog4j (1.2.14)

@ Active in 5 projects

Ignore. Create ticket

i Issue O Projects 5 O Comments 0

v Remediation

Current version 1.2.14

YYou are exposed to this vulnerability with this version.

No fix available

FOSSA cannot find a fix for this vulnerability at this time.

» Vulnerability details
CVE
CWEs
EPSS Score

Affected versions

Patched versions

Publication date

Review status

0@

CURRENT VERSION

CVE-2021-44228
CWE-20 [CWE-400 [CWE-502 4
97.6% (100th)

<2150
2122 2123 231

Dec 10, 2021

Reviewed @

https://www.first.org/cvss/
https://fossa.com/blog/understanding-using-epss-scoring-system/
https://fossa.com/blog/using-cisa-kev-catalog/
https://fossa.com/blog/using-cisa-kev-catalog/
https://fossa.com/blog/using-cisa-kev-catalog/

Example of KEV Data https://www.cisa.gov/known-exploited-vulnerabilities-catalog

VMWARE | VCENTER SERVER

¥ CVE-2022-22948

VMware vCenter Server Incorrect Default File Permissions Vulnerability : VMware vCenter Server contains an incorrect default
file permissions vulnerability that allows a remote, privileged attacker to gain access to sensitive information.

Known To Be Used in Ransomware Campaigns? Unknown

Action: Apply mitigations per vendor instructions or B pate Added: 2024-07-17
discontinue use of the product if mitigations are

: ¥ Due Date: 2024-08-07
unavailable.

Additional Notes +

https://www.cisa.gov/known-exploited-vulnerabilities-catalog

Vulnerability Exploitability Exchange (VEX)

VEX (Vulnerability Exploitability eXchange) is a set of
formats used to describe whether vulnerabilities that
affect components of a software product affect the

product itself.

Why is VEX important?
The vast majority of vulnerabilities actually aren’t
exploitable in their real-world product context.
Reasons why include that:

° The vulnerable component isn't present

° The vulnerable code isn't present

° The vulnerable code can’t be controlled by an

adversary
e The vulnerable code isn’t in the execute path

e Inline mitigations already exist

The Vulnerability Exploitability Landscape

CVSS 9+
(“Critical”)
Effort: What percent of published
vulnerabilities were prioritized? y
.
G}ffort =(FP+TP)/(TN + FP + TP + FND /
\
\
<
Exploited .
in the wild
$:lfzr$'?::lsxlegative | FP = False Positive | TP = True Positive | FN = False Negative All Vulnerabilities

VEX data (which is provided by the software supplier) complements other
vulnerability inputs (like EPSS, CVSS, and reachability analysis) to provide a

more accurate picture of security risk.

https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf

https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf

é FOSSA

Vulnerability Exploitability Exchange

w FOSSA

Answer the basic, adminy questions first

[Do | know the high level functions of the : m
application(s) that | support? List these Lo

functions. :
[What programming languages, frameworks 1'"
and package managers are used? ‘
d How well do | know about the open source =
packages that are used in the applications? (
A Are there existing processes in place to block
code changes if there are vulnerabilities
present?

W FOSSA

Recommendations

3

L J oo

Look at vulnerabilities identified in direct
dependencies

Filter by CVSS score

Is there a fix available?

A Start with patches or minor upgrades
Focus on vulnerabilities listed in the KEV
catalog

Sort by the highest EPSS score within the
detected KEV CVEs.

makeameme.or

Next level recommendation

Explore/review results from
reachability analysis (for contextual
risk assessment)

- Previous inputs may or may not

apply

_ @ x
0.7% (80th) Reachable D’Patchhx CVE-2020-10683

Improper Restriction of XML External Entity Reference
in ¥ org.domdj:dom4;j (2.1.0)

® Active found 4 months ago

Ignore Create ticket View Path

i Issue O Projects 3 </> Reachability (O Comments 0

Reachable functions
The vulnerability is reachable via the functions identified below.

1 function identified

1. org.dom4j.io.SAXReader:<init>()

/Users/halmeoni/Desktop/reachability-with-maven-example/target/example-1.1.jar (:)
L com.example.app.App:main(java.lang.String[])
L com.example.app.utils.SomeOtherReader:parse(java.net.URL)
L org.dom4j.jaxb.JAXBReader: read(java.net.URL)
L org.dom4j.jaxb.JAXBReader:getReader()
L org.dom4j.io.SAXReader:<init>()

/Users/halmeoni/Desktop/reachability-with-maven-example/target/example-1.1.jar (:)
L com.example.app.App:main(java.lang.String[])
L com.example.app.App:parse(java.net.URL)
L org.dom4j.io.SAXReader:<init>()

ic instances of functions that

ed. There may be

Reachability analysis is not perfect. The i ifi { are
FOSSA can't find (eg. after the project is built). The context of how this function is used may also be important to determining if this finding is valid as

reachable.

More at Docs/Reachability (2

P FOSSA

Let’s tackle vuln
overload in an
actual SCA tool.....

Oh, yeah, like
FOSSA

Some takeaways

Combine Severity and Exploitability to Assess Risk

Use CVSS scores for severity and EPSS scores for the likelihood of exploitation to assess overall risk.

Prioritize Actively Exploited Vulnerabilities

Prioritize vulnerabilities in the CISA KEV catalog and use VEX data to understand exploitability and mitigation
availability.

Contextualize with Reachability Analysis

Incorporate reachability analysis to determine if vulnerabilities can be exploited in your environment, ensuring a focused
and relevant risk assessment.

Combine reachability insights (if available/detected) with CVSS, EPSS, KEV, and VEX data to form a comprehensive risk
assessment. This ensures that you prioritize vulnerabilities that are not only severe and exploitable but also relevant to your
specific threat landscape.

Email chelsea@fossa.com for a FREE

=

Outine

Resolving compliance issues

What are the best practice...

What do you do when a dir

What do you do when you

What do you do when a co...

What do you do when a tra
References
Vulnerability remediation tactics
Patching In-Place
Pros
Cons
Upgrading Components
Direct Dependencies

Aside: Dependency Compatib.

Upgrading Transitive Dependen...

‘Adding a Dependency Constr.
Pros
Cons

Overriding the Dependency V..
Pros
Cons

terated Upgrades
Pros
Cons

Related reading

df on vulnerability resolution!!!!!

Bonus open source compliance resolution *“[linsideo °*

Vulnerability remediation tactics

‘You've found a vulnerability in a third-party component that your code ses. You're confident
that its really present and exploitable. You've done all your due diligence, and you want to get
tid of it. How do you do that

Generally, if a fix is available, there are two approaches you can take here:

1. You can patch the component in-place.
2. You can upgrade to a component version that does not have the vuinerabilty, by either:
a. Pinning the vulnerable component to a fixed version.
b. Doing iterated until the vulnerabl been
removed from your dependency instalation plan.

Patching In-Place

If you have a patch available for the version of the component that you use, you can always
apply the patch in-place. This usually means taking a diff and applying it directly to the
component's code as part of your build, and then building against the patched component.

Pros

« This generally requires the least amount of application-level changes, as long as the
patch roughly preserves the semantics and behavior of the original functionaliy that you
relied on.

Cons

 You need to have a patch available. This is pretty rare, unless you have a dedicated
security team that also builds patches.

« Applying patches is finicky. How do you get the patch to persist between builds? Usually
this needs some build process hackery, whether that's applying the patch as part of the
build or checking in and vendoring the source code of the component, or publishing your
own patched variant of the component.

o Patches sometimes require application-level changes anyway, especially ifthey impact
the performance or semantics of the original vulnerable functionality, or if you were
relying on implementation details.

Upgrading Components

If you don't have a patch available, you'll need to upgrade to a version of the component that is
not impacted by the vulnerabiliy.

KIDS THESE DAYS
WILL NEVER KNOW
THE STRUGGLE

Dialing Progress

Connect to My Connection

~ Action

Dialing attempt 1 of 5.

— Status
Dialing...

mailto:chelsea@fossa.com
https://imgflip.com/memegenerator/15403125/but-wait-theres-more

w FOSSA

QA time!!!
Open to discuss...

- Share your process around resolving vulnerabilities

- As an OSS maintainer

- You’re actually working at a company (startup, enterprise?)
- As a new open source contributor, how can | help?

P FOSSA

Additional references
CISA.gov justifications: CycloneDX's VEX options:

1. Component_not_present

2. Vulnerable_code_not_present

3. Vulnerable_code_cannot_be_controlled_by_adv
ersary

4. Vulnerable_code_not_in_execute_path

5. Inline_mitigations_already_exist

code_not_present
code_not_reachable
requires_configuration
requires_dependency
requires_environment
protected_by_compiler
protected_at_runtime
protected_at_perimeter
protected_by_mitigating_control

-_—

FOSSA justifications:

Component_not_present
Incorrect_data_found
Inline_mitigations_already_exist
Vulnerable_code_cannot_be_controlled_by_
adversary

. Vulnerable_code_not_in_execute_path

6. Vulnerable_code_not_present

7. Other (with space for your text)

© ® N o o &~ w DN

A w Moo=

* FOSSA

Additional references

Learn more about FOSSA:

https://qithub.com/fossas/fossa-cli/tree/master

https://docs.fossa.com/

https://fossa.com/blog/using-cisa-kev-catalog/

https://github.com/fossas/fossa-cli/tree/master
https://docs.fossa.com/
https://fossa.com/blog/using-cisa-kev-catalog/

